Combining Transformations

Multiple transformations can be applied to a function using the general transformation model:
$y-k=a f(b(x-h))$ or $y=a f(b(x-h))+k$
To sketch the graph of a function of this form, the stretches and reflections (values of a and b) occur before the translations (values of h and k).

Example 1: Graph a Transformed Function

Describe the combination of transformations that must be applied to the function $y=f(x)$ to obtain the transformed function. Sketch the graph, showing each step of the transformation.
a. $y=3 f(2 x)$
b. $y=f(2 x+4)$

Solution:

a. Compare the function $y=3 f(2 x)$ to

$$
y=a f(b(x-h))+k
$$

$$
\begin{array}{ll}
a= & b= \\
h= & k=
\end{array}
$$

The graph of $y=f(x)$ is vertically stretched by a factor of \qquad and horizontally stretched by a factor of \qquad .

First, apply the vertical stretch by multiplying the y-values by \qquad .
$(2,0) \rightarrow(2, \quad)$
$(3,-1) \rightarrow(3, \quad)$
$(6,-2) \rightarrow(6, \quad)$
$(11,-3) \rightarrow(11, \quad) \quad$ Plot the points and graph $y=3 f(x)$.
Then, using the new image points from above, apply the horizontal stretch by multiplying the x -values by \qquad
$(2,0) \rightarrow(\quad, 0)$
$(3,-3) \rightarrow(\quad,-3)$
$(6,-6) \rightarrow(\quad,-6)$
$(11,-9) \rightarrow(\quad,-9)$
Plot the points and graph $y=3 f(2 x)$.
Would performing the stretches in reverse order change the final result? \qquad
Mapping Rule: \qquad
b. Rewrite the function $y=f(2 x+4)$ in the form

$$
y=a f(b(x-h))+k
$$

$$
y=f(2 x+4) \text { becomes }
$$

\qquad

$$
a=\quad b=
$$ $h=$ \qquad

The graph of $y=f(x)$ is stretched \qquad by a factor of \qquad , and then translated \qquad units to the \qquad .

First, apply the horizontal stretch by multiplying the x-values by \qquad .
$(2,0) \rightarrow(\quad, 0)$
$(3,-1) \rightarrow(\quad,-1)$
$(6,-2) \rightarrow(\quad,-2)$
$(11,-3) \rightarrow(\quad,-3)$
Plot the points and graph $y=f(2 x)$.

Then, using the new image points from above, apply the horizontal translation by each x-value.

$$
(1,0) \rightarrow(\quad, 0)
$$

$(1.5,-1) \rightarrow(\quad,-1)$
$(3,-2) \rightarrow(\quad,-2)$
$(5.5,-3) \rightarrow(\quad,-3) \quad$ Plot the points and graph $y=f(2(x+2))$.
Note that the horizontal stretch must be performed before the horizontal translation in order to get the correct final result.

Mapping Rule: \qquad

Example 2: Combination of Transformations

State the combination of transformations that must be applied to the graph of the function $y=f(x)$ in order to obtain the graph of the transformed function, $g(x)=-2 f\left(\frac{1}{2}(x-1)\right)+4$. Write the corresponding mapping rule, then apply the mapping rule to key points on $f(x)$ to obtain the corresponding image points on $g(x)$.

Sketch the graph of $g(x)$. Write the specific equation for $g(x)$.

Solution:

Compare $g(x)=-2 f\left(\frac{1}{2}(x-1)\right)+4$ to $y=a f(b(x-h))+k$ to obtain the following values:
$\mathrm{a}=$ \qquad , $\mathrm{b}=$ \qquad , $\mathrm{h}=$ \qquad , $k=$ \qquad
To obtain the graph of $g(x)$, the graph of $f(x)$ must be reflected through the \qquad , stretched
\qquad by a factor of \qquad and \qquad by a factor of \qquad .

The graph would then be translated \qquad unit \qquad and \qquad units \qquad .

Mapping Rule: \qquad
Apply the mapping rule to key points on $f(x)$ to obtain the corresponding image points on $g(x)$, then sketch the graph of $g(x)$.

$(-2,4) \rightarrow($, _
$(-1,1) \rightarrow(\ldots,-\quad)$
$(0,0) \rightarrow\left({ }_{-}\right.$, , -
$(1,1) \rightarrow(\ldots, \quad-\quad)$
$(2,4) \rightarrow(\ldots, \quad-\quad)$

The equation of the transformed function is: \qquad

Example 3: Write the Equation of a Transformed Function Graph

The graph of the function $y=g(x)$ represents a transformation of the graph $y=f(x)$. Determine the equation of $g(x)$ in the form $y=a f(b(x-h))+k$. Explain your answer.

Solution:

Locate key points on $f(x)$ and their image points on $g(x)$:
$(-1,1) \rightarrow(1,-7)$
$(0,0) \rightarrow(3,-4)$
$(1,1) \rightarrow(5,-7)$

Stretches and Reflections:

To determine horizontal and vertical stretch factors, compare distances between key points.

Horizontally on $f(x)$ key points are \qquad units apart, and on $g(x)$ key points are \qquad units apart.

So, horizontal stretch factor = \qquad

Vertically on $f(x)$ key points are \qquad unit
 apart, and on $g(x)$ key points are \qquad units apart.

So, vertical stretch factor $=$ \qquad

Also, we can see that the graph has been reflected in the \qquad , so \qquad is negative.

So, $\mathrm{a}=$ \qquad
\qquad
Translations:
The point $(0,0)$ is not affected by stretches or reflections so we can use this to determine the horizontal and vertical translations.

So, this point has moved \qquad units \qquad and \qquad units \qquad .

So, $\mathrm{h}=$ \qquad $k=$ \qquad
Substitute the values of $\mathrm{a}, \mathrm{b}, \mathrm{h}$, and k into $y=a f(b(x-h)+k$.
The equation of the transformed function is: \qquad

Example 4: Write the Equation of a Transformed Function Graph

The graph of the function $y=g(x)$ represents a transformation of the graph $y=f(x)$. Determine the equation of $g(x)$ in the form $y=a f(b(x-h))+k$. Explain your answer.

Solution:

Compare the locations of the key points on the original graph, $f(x)$, and the transformed graph, $g(x)$, to determine whether or not there have been any reflections and/or stretches. It might be helpful to label which points on $f(x)$ correspond with their image points on $g(x)$.

Reflection in the x-axis: \qquad
Reflection in the y-axis: \qquad
Vertical stretch factor: \qquad
Horizontal stretch factor: \qquad
To determine whether or not there have been any vertical and/or horizontal translations, consider where the key points on $f(x)$ will be located after the reflections and stretches listed above have been applied, then determine what translations will be necessary to obtain the final image points on $g(x)$.

$\mathrm{f}(\mathrm{x})$		\rightarrow	$\mathrm{h}(\mathrm{x})$		\rightarrow	$g(x)$	
\times	y		\times	y		\times	y
-4	-2						
-3	1						
-2	-5						
0	2						

Compare the intermediate function, $\mathrm{h}(\mathrm{x})$, to the final function, $\mathrm{g}(\mathrm{x})$, to determine the translations.
Horizontal translation: \qquad
Vertical translation: \qquad
Final mapping rule: \qquad

The equation of the transformed function is: \qquad

Your turn:

The graph of the function $y=g(x)$ represents a transformation of the graph $y=f(x)$. Determine the equation of $g(x)$ in the form $y=a f(b(x-h))+k$.
a.

b.

c.

d.

