# Pre-Calculus 120 A Combining Transformations

Multiple transformations can be applied to a function using the general transformation model:

y-k = af(b(x-h)) or y = af(b(x-h)) + k

To sketch the graph of a function of this form, the stretches and reflections (values of a and b) occur **before** the translations (values of h and k).

## Example 1: Graph a Transformed Function

Describe the combination of transformations that must be applied to the function y = f(x) to obtain the transformed function. Sketch the graph, showing each step of the transformation.



The graph of y = f(x) is vertically stretched by a factor of \_\_\_\_\_ and horizontally stretched by a factor of \_\_\_\_\_.

First, apply the vertical stretch by multiplying the y-values by \_\_\_\_\_.

 $(2, 0) \rightarrow (2, )$   $(3, -1) \rightarrow (3, )$   $(6, -2) \rightarrow (6, )$  $(11, -3) \rightarrow (11, )$  Plot the points and graph y = 3f(x).

Then, using the new image points from above, apply the horizontal stretch by multiplying the x-values by \_\_\_\_\_

 $(2, 0) \rightarrow (, 0)$   $(3, -3) \rightarrow (, -3)$   $(6, -6) \rightarrow (, -6)$  $(11, -9) \rightarrow (, -9)$  Plot the points and graph y = 3f(2x).

Would performing the stretches in reverse order change the final result?

Mapping Rule: \_\_\_\_\_



Then, using the new image points from above, apply the horizontal translation by \_\_\_\_\_\_\_\_\_each x-value.

| $(1, 0) \rightarrow ( , 0)$       |                                             |
|-----------------------------------|---------------------------------------------|
| $(1.5,-1) \rightarrow ($ , $-1)$  |                                             |
| $(3,-2) \rightarrow ($ , -2)      |                                             |
| $(5.5,-3) \rightarrow ($ , -3 $)$ | Plot the points and graph $y = f(2(x+2))$ . |

Note that the horizontal *stretch* must be performed *before* the horizontal *translation* in order to get the correct final result.

Mapping Rule: \_\_\_\_\_

### Example 2: Combination of Transformations

State the combination of transformations that must be applied to the graph of the function y = f(x) in order to obtain the graph of the transformed function,  $g(x) = -2f\left(\frac{1}{2}(x-1)\right) + 4$ . Write the corresponding mapping rule, then apply the mapping rule to key points on f(x) to obtain the corresponding image points on g(x). Sketch the graph of g(x). Write the specific equation for g(x).

#### Solution:

Compare  $g(x) = -2f\left(\frac{1}{2}(x-1)\right) + 4$  to y = af(b(x-h)) + k to obtain the following values:  $a = \_$ \_\_\_\_,  $b = \_$ \_\_\_,  $h = \_$ \_\_\_,  $k = \_$ \_\_\_\_ To obtain the graph of g(x), the graph of f(x) must be reflected through the \_\_\_\_\_\_, stretched \_\_\_\_\_\_ by a factor of \_\_\_\_\_ and \_\_\_\_\_ by a factor of \_\_\_\_\_.

The graph would then be translated \_\_\_\_\_ unit \_\_\_\_\_ and \_\_\_\_ units \_\_\_\_\_.

Mapping Rule: \_\_\_\_\_\_

Apply the mapping rule to key points on f(x) to obtain the corresponding image points on g(x), then sketch the graph of g(x).





The equation of the transformed function is:

# Example 3: Write the Equation of a Transformed Function Graph

The graph of the function y = g(x) represents a transformation of the graph y = f(x). Determine the equation of g(x) in the form y = af(b(x-h)) + k. Explain your answer.

#### Solution:

Locate key points on f(x) and their image points on g(x):

 $(-1, 1) \rightarrow (1, -7)$ 

 $(0, 0) \rightarrow (3, -4)$ 

 $(1\ ,\ 1)\ \rightarrow\ (5,\ -7)$ 

#### Stretches and Reflections:

To determine horizontal and vertical stretch factors, compare distances between key points.

Horizontally on f(x) key points are \_\_\_\_\_

units apart, and on g(x) key points are \_\_\_\_\_

units apart.

So, horizontal stretch factor = \_\_\_\_\_

Vertically on f(x) key points are \_\_\_\_\_ unit

apart, and on g(x) key points are \_\_\_\_\_ units apart.

So, vertical stretch factor = \_\_\_\_\_

Also, we can see that the graph has been reflected in the \_\_\_\_\_, so \_\_\_\_\_ is negative.

So, a = \_\_\_\_ b = \_\_\_\_

#### Translations:

The point (0, 0) is not affected by stretches or reflections so we can use this to determine the horizontal and vertical translations.

So, this point has moved \_\_\_\_\_ units \_\_\_\_\_ and \_\_\_\_ units \_\_\_\_\_.

So, h = \_\_\_\_\_ k = \_\_\_\_\_

Substitute the values of a, b, h, and k into y = af(b(x-h)+k.

The equation of the transformed function is: \_\_\_\_\_\_



# Example 4: Write the Equation of a Transformed Function Graph

The graph of the function y = g(x) represents a transformation of the graph y = f(x). Determine the equation of g(x) in the form y = af(b(x-h)) + k. Explain your answer.

### Solution:

Compare the locations of the key points on the original graph, f(x), and the transformed graph, g(x), to determine whether or not there have been any reflections and/or stretches. It might be helpful to label which points on f(x) correspond with their image points on g(x).

Reflection in the x-axis: \_\_\_\_\_

Reflection in the y-axis: \_\_\_\_\_

Vertical stretch factor: \_\_\_\_\_

Horizontal stretch factor: \_\_\_\_\_

To determine whether or not there have been any vertical and/or horizontal translations, consider where the key points on f(x) will be located after the reflections and stretches listed above have been applied, then determine what translations will be necessary to obtain the final image points on g(x).



| f(x) |    |               | h(x) |   |               | g(x) |   |
|------|----|---------------|------|---|---------------|------|---|
| х    | У  |               | x    | У |               | х    | У |
| -4   | -2 |               |      |   |               |      |   |
| -3   | 1  | $\rightarrow$ |      |   | $\rightarrow$ |      |   |
| -2   | -5 |               |      |   |               |      |   |
| 0    | 2  |               |      |   |               |      |   |

Compare the intermediate function, h(x), to the final function, g(x), to determine the translations.

Horizontal translation: \_\_\_\_\_

Vertical translation: \_\_\_\_\_

Final mapping rule: \_\_\_\_\_

The equation of the transformed function is: \_\_\_\_\_

## Your turn:

The graph of the function y = g(x) represents a transformation of the graph y = f(x). Determine the equation of g(x) in the form y = af(b(x-h)) + k.





8 6 4 y=f(x) 2 6 8 - 6 0 8 h > 4 X 2 4 6 8 y=g(x)